The Spreadsheet Tool for Estimating Pollutant Load (STEPL)

Introduction to STEPL
March 20, 2018

Webinar Logistics

• To ask a question – Type your question in the “Q&A” tool box on the right side of your screen and click the “send” icon.

• To report any technical issues (such as audio problems) – Type your issue in the “Q&A” tool box on the right side of your screen and click the “send” icon and we will respond by posting an answer in that same box.
The Spreadsheet Tool for Estimating Pollutant Loads (STEPL)

Introduction to STEPL
March 20, 2018

Speakers

- Aileen Molloy, Tetra Tech, Inc.
- Mustafa Faizullahbloy, Tetra Tech, Inc.
<table>
<thead>
<tr>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Overview of STEPL</td>
</tr>
<tr>
<td>• Using the model</td>
</tr>
<tr>
<td>▪ Navigating worksheets</td>
</tr>
<tr>
<td>▪ Basic inputs & outputs</td>
</tr>
<tr>
<td>• Tools and Calculators</td>
</tr>
<tr>
<td>• Adding and Modifying BMPs</td>
</tr>
<tr>
<td>• STEPL Updates</td>
</tr>
</tbody>
</table>

STEPL OVERVIEW
What is STEPL?

<table>
<thead>
<tr>
<th>What is STEPL?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• STEPL– Spreadsheet Tool for Estimating Pollutant Load - an EPA model</td>
</tr>
<tr>
<td>• A customized MS Excel spreadsheet model designed to support planning level decision-making</td>
</tr>
<tr>
<td>▪ What are the average annual pollutant loadings from the non-point sources?</td>
</tr>
<tr>
<td>▪ How effective are BMPs in reducing pollutant loadings?</td>
</tr>
</tbody>
</table>

What is STEPL?

<table>
<thead>
<tr>
<th>What is STEPL?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Calculates nutrient (N, P, and BOD pollutants) and sediment loads by land use type and aggregated by watershed</td>
</tr>
<tr>
<td>• Calculates load reductions as a result of implementing BMPs</td>
</tr>
<tr>
<td>• Data driven and highly empirical</td>
</tr>
<tr>
<td>• Simple and easy to use</td>
</tr>
<tr>
<td>• Formulas and default parameter values can be modified by users (optional) with no programming required</td>
</tr>
</tbody>
</table>
Who are STEPL Users?

- Basic understanding of hydrology, erosion, and pollutant loading processes
 - Hydrology -> Curve Number approach
 - Erosion -> USLE and sediment delivery ratio, urban runoff concentration
 - Pollutant load -> runoff concentration
- Knowledge of environmental data (e.g., land use, agricultural statistics, and BMP efficiencies)
- Familiarity with MS Excel and Excel Formulas

How is STEPL Used?

- Originally developed to assist State NPS project managers report load reductions to EPA
 - Performance measures for N, P, and Sediment
 - Data entered into the Grant Reporting & Tracking System (GRTS)
- Also used by other federal/state/local partners, environmental consultants, researchers, etc.
 - Primary model used for NPS project planning
Progression of STEPL Prior to v.4.4

• First release Oct 2001
• Enhancements over the years
 ▪ BMP calculator
 ▪ Ability to add custom BMPs
 ▪ Groundwater
 ▪ Gullies & streambanks
 ▪ Puerto Rico data
 ▪ LID practices

STEPL v.4.4 updates

• Expanded and updated weather data
• Added Manure application for pasture land
• Added tool for calculating average number of months for manure application
• Added reporting function (Export Input/Output Option)
• Expanded agricultural BMPs and updated pollutant efficiencies
• Added flow volume reductions for urban LID and infiltration practices
• Added Combined BMP Efficiency worksheet
• Added customized STEPL spreadsheet model for 10 watersheds with ability to determine size of BMP treatment area to meet load reduction target
• Added E. coli placeholder for possible future release
STEPL Basic Tools

- **STEPL**
 - Calculates load for different sources at source and watershed level
 - User can specify and update BMP list
 - Urban BMP Tool for stormwater BMPs

- **BMP calculator**
 - Calculates the “combined efficiency” of multiple BMPs use when more than 1 type of BMP is applied on a single land use type

- **Input Data Server**
 - Map interface to generate input data for the model at the HUC12 level

STEPL Input Data Requirements

- **Watershed-level data**
 - County & Weather Station
 - Land use distribution
 - Agricultural animal population and number of months manure applied
 - Septic system information

- **Land cover specific**
 - BMP type and % area applied
 - Urban Land use types for urban BMPs
STEPL System Defaults

- Derived from user inputs, but can be modified
 - Soil information (based on county)
 - Curve Numbers (land use/soil group)
- Urban land use distribution
- Nutrient concentration in runoff/shallow groundwater

STEPL Process Steps

- Sources: Cropland, Urban, Pasture, Forest, Feedlot, Others
- Groundwater → Runoff → Load before BMP → BMP → Load after BMP
- Erosion

STEP 1 → STEP 2 → STEP 3 → STEP 4
System Requirements

- Windows operating system
- MS Excel 2010, 2013 or 2016
 - Not Compatible with Windows 7 operating system and MS Excel 2007 combination
- At least 30 MB hard disk space and memory >8GB RAM preferred

STEPL Website

Download the latest STEPL program file from: http://it.tetratech-ffx.com/steplweb/models$docs.htm
Alternate STEPL Access

STEPL Installation

- Run the `STEPLSetup.exe` to install
 - must have admin rights
 - Important: install STEPL in a folder you have write access to
Customized Spreadsheet Model

- Alternative to STEPLSetup.exe
 - Download STEPL 4.4 Spreadsheet Model for 10 Watersheds, which does not require admin rights
- Allows user to start working in STEPL without using installation package
- Provides ability to populate the model with up to 10 watersheds and 100 gullies and streambanks

STEPL Resources

- STEPL Installation Package includes:
 - STEPL User Guide
 - BMP Definitions
 - Sample Worksheets
 - Release Notes
 - BMP Calculator Guide
 - Support Worksheets contain input reference data
STEPL Resources

- Also on the website:
 - Frequently Asked Questions
 - STEPL Slide Shows & Tutorials
 - Alternative Models Document
 - Region 5 Model and documentation

- STEPL Support:
 stepl@tetratech.com

How to use STEPL
Running STEPL

- Know before you begin:
 - Number of watersheds
 - Number of gullies/streambanks
 - Tip: enter more than you need as placeholders

- Enable Macros
 - In Excel 2010, 2013 or 2016, Click on File menu > Options > Trust Center > Trust Center Settings > Macro Settings
 - Select “Enable all macros”
STEPL Main Program

- Run STEPL executable program STEPLSetup.exe to create and customize spreadsheet dynamically.

STEPL Spreadsheet

Composed of four worksheets.
Default File Location

Data Input

- Type over Red text only
- Do not type in cells with black text
Notes on Input Data

- Land use distribution is critical
- Modify inputs with current, local data where available
- Focus on sources being addressed by project
 - For example, agricultural data will not impact results for urban BMPs
 - Will affect total loads but not the load reduction
BMPs Worksheet

- Each land use type within each watershed can have one BMP
- % Area BMP Applied: calculate the proportion of acreage treated by the BMP for that land use

Total Load Worksheet

Each row of results corresponds to a different watershed or project
Graphs Worksheet

N, P, and BOD Load by Watersheds with BMP (lb/yr)

Sediment Load by Watersheds with BMP (t/yr)

Total N Load by Land Uses (with BMP) (lb/yr)

Total P Load by Land Uses (with BMP) (lb/yr)

Questions

??
STEPL Input Data Server

STEPL Model Input Data Server

Data is available at HUC 12 watershed

Generate data summaries
STEPL Model Input Data Server: Basic Report

- Data is summarized by HUC12 watershed

Manure Application
Manure Application

• STEPL v4.4 allows application of manure on Pasture land (Table 2)

<table>
<thead>
<tr>
<th>Watershed</th>
<th>Beef Cattle</th>
<th>Dairy Cattle</th>
<th>Swine (Hog)</th>
<th>Sheep</th>
<th>Horse</th>
<th>Chicken</th>
<th>Turkey</th>
<th>Duck</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>W2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

• A new table provides EMCs for pastureland based on six groups of livestock density (with and without manure)
 - Default values for all six categories are average EMC values from previous version STEPL 4.3
 - Will be updated on a later date based on the published literature and after review/approval by EPA

Manure Application

• STEPL v4.4 includes a new worksheet called **ManureApplication**

• Worksheet is accessed via the Manure Application button next to the weather selection pull down menu in the **Input** worksheet

• The worksheet can be used for both cropland and pastureland calculations of months of manure application

• Allows calculation of average number of months for manure application per year
Manure Application

- Can specify treatment subareas within a watershed in the `ManureApplication` worksheet
- Each subarea can have a specific number of months where manure is applied
- Calculates an area-weighted number of months when manure is applied across the watershed

Urban BMP Tool
Urban Land Use Distribution

• STEPL automatically applies a default urban land use distribution to identify the % commercial, % industrial, etc. (Table 8 on “Input” sheet)

<table>
<thead>
<tr>
<th>Watershed</th>
<th>Urban Area (ac)</th>
<th>Commercial %</th>
<th>Industrial %</th>
<th>Institutional %</th>
<th>Transportation %</th>
<th>Multi-Family %</th>
<th>Single-Family %</th>
<th>Urban Impervious</th>
<th>Vacant Developed</th>
<th>Cultivated</th>
<th>Open Space %</th>
<th>Total % Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>1,763.9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>W2</td>
<td>836.62</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
</tbody>
</table>

• Modify these values with local data when using STEPL to model results of urban BMPs

• The urban land use distribution (acres) will appear in Table 2 of the Urban worksheet

Urban BMP Tool
Urban BMP Tool

- Select the watershed
- Select an urban land use to apply the BMP
- Select the BMP
- Enter the drainage area to the BMP

Flow Volume Reductions

- STEPL can now estimate flow volume reductions for Urban LID and Infiltration BMP practices
- The user enters the design runoff captured depth, percent imperviousness of the BMP drainage areas and BMP drainage area
- Pre-populated design storage depths for each of the available infiltration BMPs are included in the BMPList Worksheet
- Flow volume reductions represented as gallons/year by urban land use type in each watershed
Flow Volume Reductions

- **Urban** worksheet showing volume reductions from urban infiltration BMPs (Table 5 of *Urban* worksheet)
- Table 6 provides the BMP surface area of number of units (e.g. rain barrels)
- Urban LID and infiltration practices in STEPL version 4.4 with flow volume reductions

<table>
<thead>
<tr>
<th>Land Use</th>
<th>BMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>Infiltration Basin</td>
</tr>
<tr>
<td>Urban</td>
<td>Infiltration Devices</td>
</tr>
<tr>
<td>Urban</td>
<td>Infiltration Trench</td>
</tr>
<tr>
<td>Urban</td>
<td>LID*/Cistern</td>
</tr>
<tr>
<td>Urban</td>
<td>LID*/Cistern+Rain Barrel</td>
</tr>
<tr>
<td>Urban</td>
<td>LID*/Rain Barrel</td>
</tr>
<tr>
<td>Urban</td>
<td>LID*/Retention</td>
</tr>
<tr>
<td>Urban</td>
<td>LID*/Dry Well</td>
</tr>
<tr>
<td>Urban</td>
<td>LID*/Infiltration Swale</td>
</tr>
<tr>
<td>Urban</td>
<td>LID*/Infiltration Trench</td>
</tr>
<tr>
<td>Urban</td>
<td>Porous Pavement</td>
</tr>
<tr>
<td>Urban</td>
<td>Sand Filter/Infiltration Basin</td>
</tr>
</tbody>
</table>

LID* BMPs

- For LID BMPs marked with an asterisk (*), STEPL calculates Runoff Volume (ac-ft/yr) reduced by the practice
 - LID*/Cistern
 - LID*/Cistern+Rain Barrel
 - LID*/Rain Barrel
- STEPL calculates the baseline runoff
 - If percentage runoff volume reduction is known, can apply this to determine runoff volume reduction amount
 - Load reduction efficiency = % runoff volume reduced
Gullies and Streambanks

Gullies and Streambanks
STEPL Gully Stabilization

• Load
 Average annual erosion during the life of the gully (ton/yr)
 \[\frac{\text{Volume} \times \text{Soil Weight}}{\text{Years}} \]
 Nutrient load
 \[\text{Annual Erosion} \times \text{Soil Nutrient Conc.} \times \text{Correction Factor} \]

• Load reduction after implementing gully stabilization
 • Specify reduction efficiency (95% efficiency by default)
 • Reduction is equal to annual erosion x user-specified efficiency

Volume = (Top Width +Bottom Width) / 2 x Depth x Length

Gully Stabilization

• Nutrient Correction Factor
 • Smaller soil particles -> larger aggregated surface area -> more nutrients attached

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>Nutrient Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>1.15</td>
</tr>
<tr>
<td>Silt</td>
<td>1.00</td>
</tr>
<tr>
<td>Sand</td>
<td>0.85</td>
</tr>
<tr>
<td>Peat</td>
<td>1.50</td>
</tr>
</tbody>
</table>
Streambank Erosion

- Load (Channel Erosion)
 \[\text{Load} = \text{Length} \times \text{Height} \times \text{Lateral Recession rate} \times \text{Soil weight} \]
- Load Reduction
 \[\text{Load Reduction} = \text{Load} \times \text{Load reduction efficiency} \]

Determining Lateral Recession Rate by Field Observation

<table>
<thead>
<tr>
<th>Lateral Recession Rate (ft/yr)</th>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 - 0.05</td>
<td>Slight</td>
<td>Some bare bank, no exposed roots</td>
</tr>
<tr>
<td>0.06 - 0.2</td>
<td>Moderate</td>
<td>Bank is mostly bare</td>
</tr>
<tr>
<td>0.3 - 0.5</td>
<td>Severe</td>
<td>Bank is bare with exposed roots</td>
</tr>
<tr>
<td>0.5+</td>
<td>Very Severe</td>
<td>Bank is bare with fallen trees</td>
</tr>
</tbody>
</table>

Questions

??
Combined BMP Efficiency – Pasture and Cropland

- Tool calculates a combined BMP efficiency from multiple types of parallel management practices on the same land use category across the watershed.
- The user selects total treated area by land use and BMP types and acreage of treatment for each treatment area in the watershed.
Combined BMP Efficiency – Pasture and Cropland

- The resulting area-weighted values in blue color should be added to Table 7 in the BMPs worksheet.

- Combined BMPs Calculated should then be used in Tables 1 and 2 on the BMPs Worksheet.

Saving Combined BMP Scenarios

- The “Copy to Log” allows the user to keep a record of the various combination of the combined BMP efficiencies scenarios that are evaluated.

- Creates a Word document (bmplog.docx) in the same location where the STEPL spreadsheet is located.
Use the BMP Calculator for Multiple BMPs
BMP Calculator

- Calculates combined efficiency of a BMP treatment train for a given land use
- The use of BMP calculator requires the understanding of BMPs and their placement in the watershed

![Diagram showing parallel, series, and combination configurations for BMPs](image)

- **Parallel**
 - Conventional tillage
 - Reduced tillage

- **Series**
 - Filter strip
 - Reduced tillage

- **Combination**
 - Conventional tillage
 - Reduced tillage
 - Settling Basin

When is BMP calculator needed?

- **Not needed** - No combined efficiency calculation
- **Needed** - Each land use type uses more than one type of BMP
STEPL BMP Calculator

- Describe schematically the BMP configuration
 - Number and linkages
 - BMP type and efficiency
 - Land use area

- Calculate combined efficiency

BMP Calculator Example 1

Each box represents 100 ac
BMP Calculator Example 2

Each box represents 100 ac

Forest Road
Grass Planting

Forest No On-site
Road BMP

Filter Strip

Load

BMP Calculator Example 3

Each box represents 100 ac

Crop Regular
Tillage

Crop Reduced
Tillage

Filter Strip

Load
Questions

Adding or Modifying BMPs
Ability to Add BMPs

- In STEPL customized menu, click “View/Edit BMP List”
- **BMPList** worksheet is shown, add or delete BMPs

Add New Data to BMP List

- New BMP added!
Update BMP List

New BMPs and Updated Pollutant Efficiencies

- New BMPs for cropland and pastureland have been added to STEPL version 4.4
 - The cropland BMP list has been expanded from 6 BMPs to 17
 - 17 pastureland BMPs added (previous versions of STEPL did not have pastureland BMPs)

- Pollutant efficiency numbers for some existing cropland BMPs have been updated

- All the efficiencies are summarized in the **BMPList** worksheet

- Click “Save Updates” to save changes to the BMP List (will be available to any STEPL project)
- You can also modify these spreadsheets manually

C:\\Step\\Support\\AllBMPstepl.csv
New BMPs available in STEPL version 4.4 for Cropland and Pastureland

<table>
<thead>
<tr>
<th>Land Use</th>
<th>BMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland</td>
<td>Bioreactor</td>
</tr>
<tr>
<td>Cropland</td>
<td>Buffer - Forest (100 ft wide)</td>
</tr>
<tr>
<td>Cropland</td>
<td>Buffer - Grass (50 ft wide)</td>
</tr>
<tr>
<td>Cropland</td>
<td>Combined BMPs Calculated</td>
</tr>
<tr>
<td>Cropland</td>
<td>Conservation Tillage 1 (30-50% Residue)</td>
</tr>
<tr>
<td>Cropland</td>
<td>Conservation Tillage 2 (equal or more than 60% Residue)</td>
</tr>
<tr>
<td>Cropland</td>
<td>Contour Farming</td>
</tr>
<tr>
<td>Cropland</td>
<td>Control Drainage</td>
</tr>
<tr>
<td>Cropland</td>
<td>Cover Crop 1 (Group A Commodity) [High Till only for Sediment]</td>
</tr>
<tr>
<td>Cropland</td>
<td>Cover Crop 2 (Group A Traditional Normal Planting Time) [High Till only for TP and Sediment]</td>
</tr>
<tr>
<td>Cropland</td>
<td>Cover Crop 3 (Group A Traditional Early Planting Time) [High Till only for TP and Sediment]</td>
</tr>
<tr>
<td>Cropland</td>
<td>Land Retirement</td>
</tr>
<tr>
<td>Cropland</td>
<td>Nutrient Management 1 (Determined Rate)</td>
</tr>
<tr>
<td>Cropland</td>
<td>Nutrient Management 2 (Determined Rate Plus Additional Considerations)</td>
</tr>
<tr>
<td>Cropland</td>
<td>Streambank Stabilization and Fencing</td>
</tr>
<tr>
<td>Cropland</td>
<td>Tamaux</td>
</tr>
<tr>
<td>Cropland</td>
<td>Two-Stage Ditch</td>
</tr>
<tr>
<td>Pastureland</td>
<td>30m Buffer with Optimal Grazing</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Alternative Water Supply</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Combined BMPs Calculated</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Critical Area Planting</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Forest Buffer (minimum 35 feet wide)</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Grass Buffer (minimum 35 feet wide)</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Grazing Land Management (rotational grazing with fenced areas)</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Heavy Use Area Protection</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Litter Storage and Management</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Livestock Exclusion Fencing</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Multiple Practices</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Pasture and Hayland Planting (also called Forage Planting)</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Prescribed Grazing</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Streambank Protection w/o Fencing</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Streambank Stabilization and Fencing</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Use Exclusion</td>
</tr>
<tr>
<td>Pastureland</td>
<td>Water Feeding Facility</td>
</tr>
</tbody>
</table>
Weather Station Updates

• Increased spatial and temporal resolution of weather stations
 ▪ updated to increase the number of weather stations in STEPL from 493 to 4,998
 ▪ Each stations has at least 30 years of data

• Quality controlled data from BASINS

• Includes data from NOAA – NCDC’s
 ▪ Summary of the Day (SOD)
 ▪ Hourly Precipitation Data (HPD)
 ▪ Integrated Surface Hourly (ISH)
Export Input/Output Option

- An Export Data button has been added to the **Input worksheet**

```
Export Input/output data: [Export Data]
```

- Allows four options to generate summary report into a MS Word Document for Input and/or Outputs

```
Export Options
Select Export Options
- Output Only
- Output with Graphs
- Input and Output Only
- Input and Output with Graphs
```

Customized Spreadsheet Model Solver

- A simple optimization algorithm (Run Solver) is now included in the customized spreadsheets model
 - Need to activate Excel Solver Add-In (follow instructions in the **BMPs** worksheet to activate Excel Solver Add-In)
 - Optimization is not available in the STEPL installation file version
- Allows the user to identify the extent of treatment areas to meet a load reduction target from the user selected BMP types
- The optimization algorithm only solves for non-urban BMPs
- The optimizer is intended to maximize the load reduction and minimize the treated land use area based on the suite of BMPs provided
Customized Spreadsheet Model Solver

- Example land uses with BMPs selected and constraints set

<table>
<thead>
<tr>
<th>Watershed</th>
<th>Cropland</th>
<th>BMPs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% P</td>
<td>% Sediment</td>
</tr>
<tr>
<td>W1</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>W2</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>W3</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>W4</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>W5</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>W6</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>W7</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>W8</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>W9</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>W10</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Watershed</th>
<th>Pastureland</th>
<th>BMPs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% P</td>
<td>% Sediment</td>
</tr>
<tr>
<td>W1</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>W2</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>W3</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>W4</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>W5</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>W6</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>W7</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>W8</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>W9</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>W10</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Summary

- STEPL is a simple model for estimating long term average pollutant load reductions to support watershed planning
- Can be applied at various scales from individual farm to large watershed or multiple watersheds
- STEPL is flexible but requires your input and judgment to apply it to your project
 ▪ Easy to add new data and to customize for site specific needs
- Seek assistance from your colleagues
- Questions & suggestions for improvement are always welcome
Contact Information

To access STEPL, visit http://it.tetratech-ffx.com/steplweb/

STEPL assistance – STEPL@tetratech.com

To contact our speakers:

Don Waye – wayne.don@epa.gov
Aileen Molloy – aileen.molloy@tetratech.com
Mustafa Faizullahbhouy – mustafa.faizullahbhouy@tetratech.com